A Construction of 2-filtered Bicolimits of Categories
نویسنده
چکیده
Résumé. Nous définissons la notion de 2-catégorie 2-filtrante et donnons une construction explicite du bicolimite d’un 2-foncteur à valeurs dans les catégories. Une catégorie considérée une 2-catégorie triviale est 2-filtrante si et seulement si c’est une catégorie filtrante, et notre construction conduit à une catégorie équivalente à la catégorie qui s’obtient par la construction usuelle de colimites filtrantes de catégories. Pour cette construction des axiomes plus faibles suffisent, et nous appelons la notion correspondante 2-catégorie pré 2-filtrante. L’ensemble complet des axiomes est nécessaire pour montrer que les bicolimites 2-filtrantes ont les propriétés correspondantes aux propriétés essentielles des colimites filtrantes.
منابع مشابه
Co-tabulations, Bicolimits and Van-Kampen Squares in Collagories
We previously defined collagories essentially as “distributive allegories without zero morphisms”. Collagories are sufficient for accommodating the relation-algebraic approach to graph transformation, and closely correspond to the adhesive categories important for the categorical DPO approach to graph transformation. Heindel and Sobociński have recently characterised the Van-Kampen colimits use...
متن کاملVan Kampen diagrams are bicolimits in Span
In adhesive categories, pushouts along monomorphisms are Van Kampen (vk) squares, a special case of a more general notion called vk-diagram. Other examples of vk-diagrams include coproducts in extensive categories and strict initial objects. Extensive and adhesive categories characterise useful exactness properties of, respectively, coproducts and pushouts along monos and have found several app...
متن کاملLII - 4 , 4 ème trimestre 2011 SOMMAIRE
We show the existence of bilimits of 2-cofiltered diagrams of topoi, generalizing the construction of cofiltered bilimits developed in [2]. For any given such diagram represented by any 2-cofiltered diagram of small sites with finite limits, we construct a small site for the bilimit topos (there is no loss of generality since we also prove that any such diagram can be so represented). This is d...
متن کاملOn lifting of biadjoints and lax algebras
Given a pseudomonad $mathcal{T} $ on a $2$-category $mathfrak{B} $, if a right biadjoint $mathfrak{A}tomathfrak{B} $ has a lifting to the pseudoalgebras $mathfrak{A}tomathsf{Ps}textrm{-}mathcal{T}textrm{-}mathsf{Alg} $ then this lifting is also right biadjoint provided that $mathfrak{A} $ has codescent objects. In this paper, we give general results on lifting of biadjoints. As a consequence, ...
متن کاملVan Kampen Colimits as Bicolimits in Span
The exactness properties of coproducts in extensive categories and pushouts along monos in adhesive categories have found various applications in theoretical computer science, e.g. in program semantics, data type theory and rewriting. We show that these properties can be understood as a single universal property in the associated bicategory of spans. To this end, we first provide a general noti...
متن کامل